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Preface 

It is our great pleasure to introduce this collection of research papers presented at the 11th 
International Conference on Computational Science and Computational Intelligence 
(CSCI 2024). This volume features a selection of papers accepted in the Research Track 
on Artificial Intelligence (CSCI-RTAI), focusing on “Computational Intelligence, Appli-
cations, and Algorithms.” It compiles noteworthy contributions in the field, presented at 
the conference held in Las Vegas, Nevada, USA, from December 11 to December 13, 
2024. 

The CSCI 2024 International Conference brought together papers from a diverse 
array of communities, including researchers from universities, corporations, and govern-
ment agencies. Accepted papers are published by Springer Nature, and the proceedings 
showcase solutions to key challenges in various critical areas of Computational Science 
and Computational Intelligence. 

Computational Science (CS) is the study of problems that are impossible to solve 
(or difficult to solve) without computers. CS can be considered to be the bridge between 
computer science and other sciences. The field is interdisciplinary by nature and includes 
the use of advanced computing capabilities to understand and solve complex problems. 
In short, CS is the science of using computers to do science. Computational Intelligence 
(CI) is the study of computational methods in ways that exhibit intelligence. These meth-
ods adapt to changing environments and changing goals. There is a significant overlap 
between the fields of CI and Artificial Intelligence (AI). However, there is also a differ-
ence: AI techniques often involve top-to-bottom methods (i.e., methods are imposed on 
solutions from the top) whereas CI techniques often involve bottom-up methods (i.e., 
solutions emerge from unstructured beginnings). An important part of CI includes a set 
of Nature-inspired computational approaches to address complex problems for which 
traditional methods are infeasible. Computational Science and Computational Intelli-
gence share the same objective: finding solutions to difficult problems. However, the 
methods to reach the solutions are different. The main objective of the CSCI Conference 
is to facilitate increased opportunities for cross-fertilization across CS and CI. 

Considering the above broad outline, the CSCI 2024 International Conference was 
composed of the following focused Research Tracks: 

Artificial Intelligence (CSCI-RTAI); Big Data and Data Science (CSCI-RTBD); 
Computational Science (CSCI-RTCS); Computational Intelligence (CSCI-RTCI); Com-
putational Biology (CSCI-RTCB); Cyber Warfare, Cyber Defense, & Cyber Security 
(CSCI-RTCW); Signal & Image Processing, Computer Vision & Pattern Recognition 
(CSCI-RTPC); Smart Cities and Smart Mobility (CSCI-RTSC); Education - CS & CE 
(CSCI-RTED); Health Informatics and Medical Systems (CSCI-RTHI); Mobile Com-
puting, Wireless Networks, & Security (CSCI-RTMC); Software Engineering (CSCI-
RTSE); Internet of Things & Internet of Everything (CSCI-RTOT); Social Network 
Analysis, Social Media, & Mining (CSCI-RTNA); Cloud Computing and Data Centers
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(CSCI-RTCC); and Parallel & Distributed Computing (CSCI-RTPD). The scope of each 
track can be found at: https://www.american-cse.org/csci2024/topics. 

An important objective of the CSCI 2024 International Conference and its associated 
Research Tracks was to foster opportunities for cross-fertilization between the fields 
of Computational Science and Computational Intelligence. The CSCI Conference is 
deeply committed to promoting diversity and eliminating discrimination, both in its role 
as a conference organizer and as a service provider. Our goal is to create an inclusive 
culture that respects and values differences, promotes dignity, equality, and diversity, 
and encourages individuals to reach their full potential. We are also dedicated, wherever 
possible, to organizing a conference that represents the global community. We sincerely 
hope that we have succeeded in achieving these important objectives. 

The Steering Committee and the Program Committee would like to extend their 
gratitude to all the authors who submitted papers for consideration. CSCI 2024 received 
submissions from 52 countries, with approximately 47% of them coming from outside 
the USA. Each submitted paper underwent a rigorous peer-review process, with at least 
two experts (an average of 2.6 referees per paper) evaluating the submissions based 
on originality, significance, clarity, impact, and soundness. In cases where reviewers’ 
recommendations were contradictory, a program committee member was tasked with 
making the final decision, often consulting additional referees for further guidance. The 
CSCI Conference followed the guidelines of COPE (Committee on Publication Ethics):

• Typical submissions underwent a single-blind peer review process, in which the 
authors remained unaware of the identities of the reviewers, while the reviewers 
were informed of the authors’ identities.

• Papers authored by one or more members of the program committee, including co-
chairs, were subjected to a double-blind peer review process, ensuring that neither 
the authors nor the reviewers were aware of each other’s identities or affiliations. 

The Research Track on Artificial Intelligence (CSCI-RTAI) of CSCI 2024 Confer-
ence received 383 submissions, of which 78 papers were accepted, resulting in a paper 
acceptance rate of 20%. This volume includes only 27 of the accepted papers. 

We are deeply grateful to the many colleagues who contributed their time and effort 
to organizing the CSCI 2024 Conference. In particular, we extend our thanks to the 
members of the Program Committee, the Steering Committee, and the referees. We 
would also like to express our appreciation to the primary sponsor of the conference, 
the American Council on Science & Education. The list of members of the Program 
Committee for each track can be found at: https://www.american-cse.org/csci2024/com 
mittees. 

We extend our heartfelt gratitude to all the speakers and authors for their valuable 
contributions. We would also like to thank the following individuals and organizations 
for their support: the staff at the Luxor Hotel (conference/meeting department) and the 
staff of Springer Nature, for their assistance in various aspects of the event. 

We are pleased to present the proceedings of CSCI 2024 (selected papers of CSCI-
RTAI). These proceedings represent a collection of outstanding research contributions 
that reflect the diversity and depth of work in Artificial Intelligence.

https://www.american-cse.org/csci2024/topics
https://www.american-cse.org/csci2024/committees
https://www.american-cse.org/csci2024/committees
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Humanizing AI - Enhancing User Engagement 
in Health Applications with Personality-Driven 

AI Design 

Bharath Sudharsan(B) and Paul Waxman 
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Abstract. This paper introduces an innovative approach to enhancing user 
engagement in health and wellness chatbots through the implementation of 
personality-driven AI design. By leveraging advanced Large Language Models 
(LLMs) and principles of human-centered design, we developed a web-based chat 
solution featuring distinct AI personas. The system was deployed as a consumer-
focused product, engaging thousands of users over several weeks. Our findings 
demonstrate significantly higher user engagement compared to traditional chatbot 
interactions, with extended conversation durations and improved user retention. 
The personality-driven approach led to more natural, compelling interactions, 
potentially increasing the effectiveness of digital health interventions. This study 
provides valuable insights into the potential of human-centered AI design in cre-
ating more engaging and impactful health and wellness tools. Moreover, it raises 
important considerations about the ethical implications and long-term effects of 
highly engaging AI interactions in healthcare contexts. Our research contributes 
to the growing body of knowledge on AI applications in digital health, offer-
ing a novel perspective on how personality-driven chatbots can transform user 
experiences in health and wellness platforms. 

Keywords: Artificial Intelligence · Large Language Models · Chatbots · User 
Engagement · Personality-Driven AI 

1 Introduction 

1.1 Background 

The integration of artificial intelligence (AI) in healthcare has shown promising results 
across various applications, from diagnosis to treatment planning [25]. Chatbots and 
conversational AI have emerged as particularly promising tools for patient engagement 
and support [15]. However, the effectiveness of these systems has been limited by their 
often impersonal and utilitarian nature. 

Traditional healthcare chatbots have typically focused on functional aspects, such as 
symptom checking or medication reminders [7]. While useful, these systems often fail to 
create meaningful engagement with users, particularly in contexts requiring long-term 
interaction, such as chronic disease management [9].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
H. R. Arabnia et al. (Eds.): CSCI 2024, CCIS 2503, pp. 130–143, 2025. 
https://doi.org/10.1007/978-3-031-94940-1_11 
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1.2 Problem Statement 

The core challenge addressed in this research is the perception of AI chatbots as unin-
teresting and impersonal, particularly in the chronic condition space. This perception 
leads to decreased user engagement over time, hindering the effectiveness of these tools 
in collecting patient data, providing support, and encouraging adherence to treatment 
plans [7]. 

Unlike previous approaches that focused primarily on improving the accuracy or 
range of medical information provided [12], our research recognizes that the quality of 
interaction itself is crucial for sustained engagement. 

1.3 Proposed Solution 

We propose a novel approach to chatbot design that leverages advanced Large Language 
Model (LLM) capabilities to create AI personas with distinct personality traits. This 
approach differs significantly from traditional rule-based or intent-matching chatbot 
designs [11] by allowing for more dynamic and context-aware interactions. 

Our solution aims to infuse chatbots with human-like characteristics, creating more 
engaging and relatable interactions. This approach is inspired by research in human-
computer interaction suggesting that users tend to apply social rules to computer inter-
actions [19] and that perceived personality in AI can influence user engagement and 
trust [16]. 

The key innovation in our approach lies in the systematic application of personality 
traits to healthcare chatbots using advanced LLM prompting techniques. Unlike previous 
attempts at creating persona-based chatbots [24], our method allows for more nuanced 
and consistent personality expression across a wide range of healthcare-related topics. 

1.4 Contributions 

Our research makes the following key contributions: 

1. Development of a novel framework for creating personality-driven AI chatbots using 
advanced LLM prompting techniques specifically tailored for health and wellness 
contexts. 

2. Implementation and real-world testing of over 100 unique AI personalities mapped to 
base persona types, providing insights into user preferences and engagement patterns. 

3. Empirical evidence demonstrating significantly higher user engagement metrics 
compared to traditional chatbot interactions in a health and wellness setting. 

4. Identification of ethical considerations and potential risks associated with highly 
engaging AI personalities in healthcare contexts. 

However, this approach also raises important ethical considerations, such as the risk of 
users developing emotional attachments to AI systems or the potential for misuse of per-
sonal information shared in more engaging conversations [17]. These ethical implications 
are carefully considered in our system design and implementation.
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2 Related Work 

2.1 Evolution of Human-Computer Interaction in Healthcare 

The field of HCI in healthcare has evolved significantly over the past decades. Early 
systems focused primarily on functional aspects, such as data input and retrieval [21]. As 
technology advanced, more sophisticated interfaces emerged, incorporating principles of 
user-centered design and cognitive psychology [22]. Recent developments in adaptive 
interfaces and AI-driven personalization [7] have paved the way for more engaging 
and user-friendly healthcare applications. However, these advancements have primarily 
focused on adapting content or functionality rather than on creating more human-like 
interactions. Our research builds upon these foundations but takes a novel approach 
by focusing on the qualitative aspects of interaction - specifically, the expression of 
personality - as a means of enhancing engagement. 

2.2 Chatbots and Conversational AI in Healthcare 

The development of chatbots in healthcare has seen significant progress, from rule-
based systems to more advanced, context-aware conversational agents. Recent studies 
have demonstrated the potential of these systems in areas such as mental health support 
[10], medication adherence [8], and chronic disease management [9]. However, most 
existing healthcare chatbots still struggle with maintaining long-term user engagement 
and often fail to provide a truly personalized experience. Our research addresses this 
gap by focusing on creating more human-like and engaging interactions through the 
systematic implementation of personality traits. 

2.3 Personality in AI Systems 

Research on incorporating personality into AI systems has gained traction in recent years. 
Studies have shown that users tend to anthropomorphize AI agents, and that perceived 
personality traits can influence user engagement and trust [19]. While some researchers 
have explored the use of personality in chatbots [24], these efforts have often been 
limited in scope or not specifically tailored to healthcare contexts. Our research extends 
this work by applying personality-driven design specifically to healthcare chatbots, with 
a focus on chronic condition management. The key difference in our approach is the use 
of advanced LLM technology combined with carefully crafted prompts to create more 
nuanced and consistent personality expressions. This allows for a level of conversational 
sophistication and adaptability not previously seen in healthcare chatbots. 

3 System Design 

3.1 Conceptual Framework 

Our system design is based on the Five-Factor Theory of Personality [18], which identi-
fies five key personality traits: Openness, Conscientiousness, Extraversion, Agreeable-
ness, and Neuroticism (OCEAN). This well-established framework provides a solid
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foundation for creating distinct AI personas. Unlike previous chatbot designs that might 
have used simplistic rules to mimic personality (e.g., using exclamation marks for an 
“enthusiastic” persona), our approach leverages the nuanced language understanding of 
LLMs to express these traits in more subtle and context-appropriate ways (Fig. 1). 

Fig. 1. Five-Factor Theory of Personality with Example Boxes. 

3.2 LLM Selection and Training 

We utilized our proprietary Healthcare behavior language1 model as our base LLM. 
This choice represents a balance between the computational efficiency needed for real-
time conversations and the sophisticated language understanding required for nuanced 
personality expression. The use of temperature settings (0.2–0.3) and token limits (200) 
was crucial for maintaining a balance between consistency and variability in responses. 
This approach differs from traditional chatbot designs that often use fixed response 
templates, allowing for more natural and varied conversations while still maintaining 
coherence. 

To address the potential limitation of reduced variability due to lower temperature 
settings, we implemented a dynamic temperature adjustment system. This system varies 
the temperature between 0.2 and 0.7 based on the context of the conversation and the 
specific personality traits being expressed. For example, when the AI needs to provide 
factual health information, we use lower temperatures for more conservative responses. 
However, when engaging in casual conversation or expressing personality quirks, we 
increase the temperature to allow for more creative and diverse outputs. This approach

1 Our proprietary Healthcare behavior language model is based on the GPT-3.5 architecture 
(Brown et al., 2020) and has been fine-tuned on a large corpus of healthcare-related texts and 
conversations. Due to the proprietary nature of this model, we cannot provide more specific 
details. 
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helps maintain a balance between consistency and variability, allowing us to create more 
natural-sounding conversations while still ensuring appropriate responses in a healthcare 
context. 

3.3 Prompt Engineering 

Our structured prompt format, consisting of five main sections (Safety Preamble, System 
Preamble, User Preamble, Style Guide, and Conversation Rules), represents a novel 
approach to guiding LLM behavior in healthcare contexts. This structure allows for 
fine-grained control over the AI’s behavior while maintaining the flexibility needed for 
natural conversations. It’s a significant advancement over simpler prompt designs used 
in general-purpose chatbots, as it incorporates healthcare-specific considerations and 
personality expression guidelines. 

3.4 Personality Trait Implementation 

The implementation of specific traits (humor, empathy, storytelling, and opinion expres-
sion) represents a careful balance between creating engaging interactions and maintain-
ing appropriate boundaries in a healthcare context. This approach differs from general-
purpose chatbots by tailoring personality expression to the sensitive nature of healthcare 
conversations. For example, the use of fictional “friend” anecdotes for storytelling avoids 
ethical issues while still allowing for relatable narrative elements. 

3.5 Guardrail Design 

Our guardrail design, which includes topic restrictions, response moderation, and medi-
cal advice limitations, is crucial for ensuring the safe and ethical use of personality-driven 
AI in healthcare. This multi-layered approach to safety represents an advancement over 
simpler content filtering methods, as it considers the nuanced context of healthcare con-
versations and the potential risks of more engaging AI interactions. Further details of 
these guardrails are explored in our other work on taming LLMs for healthcare [23]. 

4 Experimental Setup 

4.1 Persona Development 

The development of four distinct personas (Robotic, Empathetic, Funny, and Chatty) 
allows for a comprehensive exploration of how different personality traits affect user 
engagement in healthcare contexts. This approach goes beyond simple A/B testing by 
providing a nuanced understanding of how different personality elements contribute to 
user engagement and satisfaction in healthcare conversations (Fig. 2).
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Fig. 2. Testing process for creating and refining AI personas. 

4.2 Web-Based Chat Solution 

Platform Overview 
We developed a consumer-focused, web-based chat interface designed to engage users 
in health and wellness conversations through interesting AI personalities. The platform 
was built for real-world use, prioritizing user engagement and accessibility. 

Key Features 

1. Simple, Intuitive Interface: A clean, easy-to-use chat window optimized for both 
desktop and mobile devices. 

2. Multiple AI Personalities: Users could choose from four distinct AI personas 
(Robotic, Empathetic, Funny, Chatty), each offering a unique conversational style. 

3. Continuous Conversations: The system maintained context across sessions, allowing 
for ongoing, natural dialogue. 

4. Privacy-Focused: End-to-end encryption for all chats, with user option to delete chat 
history.
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5. Responsive Design: Consistent experience across various devices and screen sizes. 

AI Persona Implementation 
Our system implemented over 100 unique AI personalities, each with distinct character 
traits, quirks, and backstories. These personalities were mapped to four base persona 
types (Robotic, Empathetic, Funny, and Chatty) for analysis purposes, but users inter-
acted with individual characters rather than generic personas. Here’s a detailed overview 
of our implementation approach: 

1. Character Creation: We developed comprehensive character profiles for each AI 
personality, including:

• Name and basic demographic information
• Personality traits aligned with the Five-Factor Model (FFM)
• Unique quirks and interests
• Conversational style and tone
• Backstory elements relevant to health and wellness discussions 

For example, one character named “Dr. Jaz” was created with the following profile:

• Base Persona: Empathetic
• FFM Traits: High in Agreeableness and Conscientiousness, moderate Openness
• Quirk: Often relates health topics to gardening analogies
• Backstory: Former pediatrician turned health coach, passionate about preventive 

care
• Conversational Style: Warm, encouraging, uses simple explanations 

We created a diverse range of characters to appeal to different user preferences and 
needs. This included variations in age, background, and personality traits within each 
base persona type. 

2. Prompt Engineering: For each character, we created custom prompts that incorpo-
rated their unique traits and backstory. These prompts guided the LLM in generating 
responses consistent with the character’s personality. Our prompt engineering process 
involved: 
(a) Crafting a detailed character description, including key phrases and mannerisms 
(b) Developing scenario-based examples of how the character would respond in 

various health-related situations 
(c) Incorporating character-specific knowledge and interests into the prompt 
(d) Defining boundaries and ethical guidelines specific to each character’s role and 

background 

For “Dr. Jaz”, the prompt included elements like: “You are Dr. Jaz, a warm and 
empathetic former pediatrician. You often use gardening metaphors to explain 
health concepts. Your goal is to encourage healthy habits through gentle guidance 
and positive reinforcement. Always maintain a professional demeanor while being 
approachable and kind.” 

3. Response Modulation: We implemented a response modulation system to ensure that 
each character’s responses aligned with their defined personality traits. This system
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involved: a) Trait-based response filtering: Responses were scored based on their 
alignment with the character’s FFM traits, with higher-scoring responses being prior-
itized. b) Quirk injection: Character-specific quirks were algorithmically inserted into 
responses at appropriate intervals to maintain consistency and uniqueness. c) Emo-
tional tone adjustment: The emotional content of responses was calibrated to match 
the character’s typical emotional expression patterns. d) Vocabulary and phrasing 
customization: Each character had a defined lexicon and phrase bank that influenced 
word choice and sentence structure in responses. 

For “Dr. Jaz”, this meant ensuring responses frequently included gardening analogies, 
maintained a warm tone, and used simple, patient-friendly language. 

4. Contextual Adaptation: Our AI personalities were designed to adapt their commu-
nication style based on the user’s mood and the conversation context, while still 
maintaining their core character traits. This was achieved through: a) Mood detec-
tion: Analyzing user inputs to infer emotional states b) Topic sensitivity adjustment: 
Modifying the character’s approach based on the sensitivity of the health topic being 
discussed c) Conversation history analysis: Tracking the flow and content of the con-
versation to provide contextually appropriate responses d) User preference learning: 
Gradually adapting to individual user communication preferences over time 

For “Dr. Jaz”, this might involve using more soothing language when detecting user 
anxiety, or shifting to more serious tones when discussing critical health issues. 

4.3 Real-World Implementation Overview 

Duration: 4 weeks 

User Base 

– Total Users: 5,120 
– Demographic information was not collected as this was a consumer product, not a 

formal study 

Implementation Approach 

– The chat solution was launched as a consumer-focused product, available to the public 
– Users discovered the platform through various channels including social media, word-

of-mouth, and organic search 
– No formal recruitment or enrollment process; users simply signed up and started 

chatting 

Data Collection 

– Engagement Metrics: Automatically collected through normal platform usage
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– Chat duration 
– Frequency of chats 
– Time between chats 
– Weekly retention 
– User Feedback: Collected through optional in-chat feedback and ratings 

Key Aspects 

1. Real-World Usage: Data reflects genuine user engagement in a non-controlled 
environment 

2. Organic Growth: User base grew naturally without targeted recruitment 
3. Voluntary Engagement: Users chose to interact with the AI based on their interest 

and perceived value 
4. Privacy-First: Minimal personal data collected, focusing on engagement metrics and 

optional feedback 

Ethical Considerations 

– Clear communication to users about interacting with an AI, not a human 
– Regular reminders about the AI’s limitations and when to seek professional medical 

advice 
– Robust security measures to protect user privacy and data 

This revised overview accurately reflects the nature of the consumer-focused solution and 
its real-world implementation. The data collected represents organic user engagement 
with the AI personalities in a natural, non-study environment, providing valuable insights 
into the effectiveness of the personality-driven approach in a real-world health and 
wellness context. 

5 Implementation and Results 

5.1 Web-Based Chat Solution 

We implemented our personality-driven AI chatbot design in a web-based chat solution 
focused on health and wellness. The platform was designed to be simple and accessible, 
allowing users to engage with various AI personalities through text-based conversations. 

Platform Features 

– Four AI personas to choose from (Robotic, Empathetic, Funny, Chatty) 
– Text-based chat interface 
– No additional features beyond the chat functionality
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5.2 Study Overview 

Duration: 4 weeks 
Participants: 5,120 users 
Total Chats: 243,000 

5.3 Data Collection Methods 

– User engagement metrics (chat frequency, chat duration, user retention) 
– Self-reported mood and wellness scores collected through chat interactions 

5.4 Results 

User Engagement 

– Average Conversation Duration: 35 min 
– Average turns of conversations: 40 turns 
– Long Conversations: 10% of daily conversations last over an hour 
– Weekly Retention Rate: 60% of users who engage in a given week return the following 

week 

These results demonstrate exceptional user engagement with the AI chatbot: 

1. Conversation Length: The average conversation duration of 35 min is remarkably 
high for a digital health intervention. This suggests that users find the interactions 
highly engaging and valuable, dedicating substantial time to these conversations. 

2. Continuous Engagement: The average turns in a chats indicates that users are having 
long and deep conversations with the AI. This suggests a very deep and engaging 
interaction, where users are opening up to an AI and chatting like with a real friend, 
and a testament that the AI is building rapport and trust fairly quickly. 

3. Extended Interactions: The fact that one in ten conversations lasts over an hour each 
day is particularly noteworthy. This indicates that a significant portion of users are 
having in-depth, prolonged interactions with the AI, which could allow for more 
comprehensive discussions about health and wellness topics. 

4. User Retention: A 60% week-over-week retention rate is impressive in the context of 
digital health applications. This suggests that the majority of users find enough value 
in the interactions to return on a regular basis. 

Self-Reported Outcomes 
Due to the nature of the chat-based solution, specific quantitative data on mood and well-
ness improvements were not collected through separate surveys. However, qualitative 
analysis of chat logs indicated positive trends: 

– Many users reported feeling “understood” and “supported” by the AI 
– Users frequently mentioned feeling more positive about their health and wellness 

after conversations 
– Several users noted that regular chats with the AI helped them stay motivated with 

their health goals



140 B. Sudharsan and P. Waxman

5.5 Analysis and Discussion 

These engagement metrics are exceptionally high compared to typical digital health 
interventions or general chatbot applications: 

– The average conversation duration of 35 min far exceeds the norm for digital health 
interventions, which often struggle to maintain user attention for more than a few 
minutes [13]. 

– The 40 turn average chats suggests an unprecedented level of user engagement, 
indicating that the conversations are highly interactive and compelling. 

– The 60% week-over-week retention rate is significantly higher than the average 
retention rates for mobile health apps, which are often below 30% after one week [6]. 

Potential factors contributing to these strong engagement metrics could include: 

1. The personality-driven approach, making interactions feel more natural and relatable. 
2. The ability of the AI to engage in extended, contextually relevant conversations. 
3. The perceived value users are getting from these health and wellness focused 

interactions. 
4. The rapid response time of the AI, maintaining user interest and promoting continuous 

dialogue. 

5.6 Comparative Analysis 

To evaluate the effectiveness of our personality-driven approach, we compared our results 
to a baseline model and existing health chatbots. However, it’s important to note that 
directly comparable metrics are often not publicly available or reported in a standardized 
way across different studies. 

Baseline Model (No Personality): We used a version of our LLM without personality 
implementation, providing factual responses to health queries.

• Average Conversation Duration: 8 min
• Weekly Retention Rate: 25% 

Comparison with Existing Chatbots: 

1. Woebot (Fitzpatrick et al., 2017): This study doesn’t report exact conversation 
duration or weekly retention rates. However, it does provide some engagement 
metrics:

• 85% of participants used Woebot at least once over the study period (2 weeks)
• The mean number of interactions with Woebot was 12.14 (SD 2.23) over 2 weeks 

2. Wysa: We couldn’t find publicly available, peer-reviewed data on average conversa-
tion duration or weekly retention rates for Wysa. 

3. Character.AI platform: As a general conversational AI platform rather than a health-
specific chatbot, Character.AI doesn’t publish comparable engagement metrics for 
health conversations. 

Our personality-driven approach results:

• Average Conversation Duration: 35 min
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• Weekly Retention Rate: 60% 

It’s important to note that direct comparisons between these systems are challenging 
due to differences in purpose, user base, and measurement methodologies. Our results 
suggest improved engagement compared to our non-personalized baseline, but further 
research would be needed to make definitive comparisons with other chatbot systems. 

Persona type Average conversation duration (min) Weekly retention rate (%) 

Empathetic 41 67 

Funny 37 62 

Chatty 32 57 

Robotic 30 54 

Overall average 35 60 

Limitations and Considerations 

1. Content Analysis: While we have strong engagement metrics, a detailed qualitative 
analysis of conversation content would provide insights into what topics or interaction 
styles are driving these extended conversations. 

2. User Demographics: Understanding how engagement metrics vary across different 
user groups could help in further personalizing the AI interaction. 

3. Long-term Retention: While the week-over-week retention is strong, longer-term 
studies would be valuable to assess sustained engagement over months or years. 

4. Health Outcomes: Future research should investigate how these high engagement 
levels translate to actual health behaviors and outcomes. 

5. Potential for Over-reliance: The high engagement levels, while promising, also raise 
questions about potential over-reliance on AI for health information and support. This 
ethical consideration should be explored in future studies. 

These results provide compelling evidence for the effectiveness of personality-driven 
AI chatbots in creating engaging, sustained interactions in the context of health and 
wellness. The exceptionally long average conversation times, minimal gaps between 
chats, and high retention rates suggest that this approach has significant potential for 
delivering digital health interventions. Future work should focus on understanding the 
long-term impact of these engagements on health outcomes and refining the AI personas 
to maximize both engagement and health benefits. 

However, this approach also raises important ethical considerations that will need 
to be carefully addressed as this technology develops. Future research should focus on 
long-term studies of the impact of personality-driven AI on health outcomes, as well as 
on refining the ethical frameworks governing the use of these systems in healthcare. 
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