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Preface 

It is our great pleasure to introduce this collection of research papers presented at the 26th 
International Conference on Artificial Intelligence (ICAI 2024). This volume features 
a selection of papers showcasing significant advancements and innovative research in 
artificial intelligence. The ICAI 2024 conference was held as part of the federated 2024 
Congress on Computer Science, Computer Engineering, and Applied Computing (CSCE 
2024), which took place from July 22 to July 25, 2024, in Las Vegas, Nevada, USA. 

The CSCE 2024 Congress brought together papers from a diverse array of com-
munities, including researchers from universities, corporations, and government agen-
cies. Accepted papers are published by Springer Nature, and the proceedings showcase 
solutions to key challenges in various critical areas of Computer Science, Computer 
Engineering, and Applied Computing. 

Computer Science (CS) is the study of computational systems, data processing, 
information management, and automation. Many applications in CS focus on solving 
problems that would be impossible or extremely difficult to address without the use 
of computers. It serves as a bridge between computational science and other scientific 
fields. The interdisciplinary nature of CS involves leveraging computers to understand 
and solve complex challenges, making it the science of using computers to advance 
scientific discovery. Computer Engineering (CE), on the other hand, integrates aspects 
of computer science, electronic engineering, and electrical engineering. It encompasses 
the design and production of computer hardware, such as chips, servers, supercomputers, 
embedded systems, and communication systems, among others. 

Considering the above broad outline, the CSCE 2024 Congress was composed of 
the following focused conferences: 

Applied Cognitive Computing (ACC); Bioinformatics & Computational Biology 
(BIOCOMP); Biomedical Engineering (BIOENG); Scientific Computing (CSC); e-
Learning, e-Business, Enterprise Information Systems, & e-Government (EEE); Embed-
ded Systems, Cyber-physical Systems, & Applications (ESCS); Foundations of Com-
puter Science (FCS); Frontiers in Education (FECS); Grid, Cloud, & Cluster Com-
puting (GCC); Health Informatics (HIMS); Artificial Intelligence (ICAI); Data Sci-
ence (ICDATA); Emergent Quantum Technologies (ICEQT); Internet Computing & IoT 
(ICOMP); Wireless Networks (ICWN); Information & Knowledge Engineering (IKE); 
Image Processing, Computer Vision, & Pattern Recognition (IPCV); Modeling, Simula-
tion & Visualization Methods (MSV); Parallel & Distributed Processing Techniques & 
Applications (PDPTA); Security & Management (SAM); and Software Engineering 
Research & Practice (SERP). The scope of each track can be found at: https://www.ame 
rican-cse.org/csce2024/conferences 

The primary objective of the CSCE Congress and its associated conferences is to 
foster opportunities for cross-fertilization between the fields of Computer Science (CS) 
and Computer Engineering (CE). The CSCE Congress is deeply committed to promoting 
diversity and eliminating discrimination, both in its role as a conference organizer and

https://www.american-cse.org/csce2024/conferences
https://www.american-cse.org/csce2024/conferences
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as a service provider. Our goal is to create an inclusive culture that respects and values 
differences, promotes dignity, equality, and diversity, and encourages individuals to reach 
their full potential. We are also dedicated, wherever possible, to organizing a conference 
that represents the global community. We sincerely hope that we have succeeded in 
achieving these important objectives. 

The Steering Committee and the Program Committee would like to extend their grat-
itude to all the authors who submitted papers for consideration. This year’s conference 
received submissions from 67 countries, with approximately 56% of them coming from 
outside the USA. Each submitted paper underwent a rigorous peer-review process, with 
at least two experts (an average of 2.4 referees per paper) evaluating the submissions 
based on originality, significance, clarity, impact, and soundness. In cases where review-
ers’ recommendations were contradictory, a program committee member was tasked 
with making the final decision, often consulting additional referees for further guidance. 
The Congress followed the guidelines of COPE (Committee on Publication Ethics):

• Typical submissions underwent a single-blind peer review process, in which the 
authors remained unaware of the identities of the reviewers, while the reviewers 
were informed of the authors’ identities.

• Papers authored by one or more members of the program committee, including co-
chairs, were subjected to a double-blind peer review process, ensuring that neither 
the authors nor the reviewers were aware of each other’s identities or affiliations. 

The ICAI 2024 Conference received 376 submissions, with 75 papers accepted, 
reflecting a 19% acceptance rate. This volume includes only 41 of the accepted papers. 

We are deeply grateful to the many colleagues who contributed their time and effort 
to organizing the Congress. In particular, we extend our thanks to the members of the 
Program Committee, the Steering Committee, the referees, and the Chairs and organizers 
of individual sessions and conferences. We would also like to express our appreciation to 
the primary sponsor of the conference, the American Council on Science & Education. 
The list of members of the Program Committee for each track can be found at: https:// 
www.american-cse.org/csce2024/committees 

We extend our heartfelt gratitude to all the speakers and authors for their valuable 
contributions. We would also like to thank the following individuals and organizations 
for their support: the staff at the Luxor Hotel, the staff of Springer Nature, Pablo Rivas 
(Baylor University, Waco, Texas), and Ken Ferens (University of Manitoba, Canada). 

We are pleased to present the proceedings of ICAI 2024. These proceedings represent 
a collection of outstanding research contributions that reflect the diversity and depth of 
work in Artificial Intelligence. 

Hamid R. Arabnia 
Leonidas Deligiannidis 

Soheyla Amirian 
Farzan Shenavarmasouleh 
Farid Ghareh Mohammadi 

David de la Fuente 
Jose A. Olivas
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Taming Large Language Models 
for Healthcare – A Multi-layered System 

Bharath Sudharsan(B), Ryan Kosiba, Aishwarya Parthasarathi, 
and Rohan Paul Richard 

AmalgamRx, Wilmington, DE, USA 
bsudharsan@amalgamrx.com 

Abstract. This paper presents a novel framework for implementing robust safety 
guardrails in conversational AI systems powered by large language models (LLMs) 
for healthcare applications. We propose a multi-layered approach that combines 
LLM-based classifiers, vector store matching, and dynamic prompt engineering 
to ensure safe and ethical interactions. Our system, designed to support patients 
with chronic conditions, demonstrates how LLMs can be effectively constrained 
to provide helpful information while avoiding potential risks associated with med-
ical misinformation or inappropriate advice. We evaluate our framework using a 
comprehensive test set, demonstrating its efficacy in maintaining safety without 
significantly compromising the naturalness of conversations. Our findings con-
tribute to the ongoing discourse on responsible AI deployment in sensitive domains 
like healthcare, particularly in creating systems that can build rapport and trust 
while adhering to strict ethical guidelines. These outcomes suggest that our multi-
layered guardrail system offers a promising approach to harnessing the power of 
LLMs in healthcare while prioritizing patient safety and ethical considerations. 

Keywords: Large Language Models · Healthcare AI · Safety Guardrails · 
Conversational AI · Ethical AI · Patient Support · Chronic Disease Management 

1 Introduction 

The advent of large language models (LLMs) has opened new possibilities for creating 
more natural and context-aware conversational AI systems in healthcare [1]. These mod-
els, trained on vast corpora of human-generated text, have demonstrated unprecedented 
capabilities in understanding and generating human-like text, including the ability to con-
vey empathy, build rapport, and engage in nuanced communication [2]. The potential 
applications of LLMs in healthcare are vast, ranging from patient education and sup-
port to assisting healthcare professionals in clinical decision-making and administrative 
tasks. 

However, the deployment of such powerful models in medical contexts poses sig-
nificant risks, including the potential for generating misinformation, providing inappro-
priate medical advice, or violating patient privacy [3]. These risks are particularly acute 
in healthcare, where the consequences of misinformation or inappropriate advice can

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
H. R. Arabnia et al. (Eds.): CSCE 2024, CCIS 2252, pp. 191–201, 2025. 
https://doi.org/10.1007/978-3-031-86623-4_15 
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have serious implications for patient health and well-being. As such, the development of 
robust safety mechanisms is paramount to the responsible deployment of LLM-powered 
systems in healthcare settings. 

1.1 Evolution of Conversational AI in Healthcare 

The evolution of human-AI chat experiences in healthcare has been marked by signif-
icant advancements over the past decades. Early rule-based systems like ELIZA [4] 
gave way to more sophisticated statistical models, and now to neural network-based 
approaches that can engage in more natural, context-aware conversations [5]. These 
early systems, while groundbreaking, were limited in their ability to understand context, 
generate natural language, and provide truly personalized responses. 

The introduction of machine learning techniques, particularly deep learning, marked 
a significant leap forward in the capabilities of conversational AI systems. Models like 
recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) 
improved the ability of AI systems to maintain context over longer conversations and 
generate more coherent responses. However, these models still struggled with long-
term dependencies and often produced repetitive or inconsistent outputs in extended 
dialogues. 

LLMs represent the latest leap in this evolution, offering the potential for AI assis-
tants that can understand and respond to the nuanced emotional and informational needs 
of patients and caregivers [6]. Unlike their predecessors, LLMs can generate fluent, con-
textually appropriate responses across a wide range of topics, making them particularly 
well-suited for the complex and varied nature of healthcare conversations. 

1.2 Challenges and Risks of LLMs in Healthcare 

However, the very capabilities that make LLMs so promising also present unique chal-
lenges in healthcare contexts. Their ability to generate fluent, human-like text raises 
concerns about users potentially forming inappropriate emotional attachments or mis-
taking AI-generated advice for professional medical opinion [7]. This risk is particu-
larly pronounced in healthcare, where patients may be vulnerable and seek authoritative 
guidance. 

Additionally, the black-box nature of these models makes it difficult to guarantee 
their outputs will always align with medical best practices and ethical guidelines [8]. 
LLMs can sometimes generate plausible-sounding but incorrect or harmful information, 
a phenomenon known as “hallucination.” In a healthcare context, such hallucinations 
could lead to dangerous misinformation or inappropriate medical advice. 

Furthermore, LLMs trained on large, diverse datasets may inadvertently perpetuate 
biases present in their training data. This could lead to disparities in the quality of infor-
mation or support provided to different demographic groups, potentially exacerbating 
existing health inequities. 

1.3 The Need for Robust Safety Guardrails 

Given these challenges, there is a clear need for robust safety mechanisms to govern the 
deployment of LLMs in healthcare settings. These mechanisms must be capable of:
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1. Ensuring the accuracy and reliability of medical information provided by the system 
2. Preventing the generation of inappropriate or potentially harmful advice 
3. Maintaining clear boundaries between AI support and professional medical care 
4. Protecting patient privacy and confidentiality 
5. Mitigating potential biases in the system’s responses 
6. Providing transparency about the AI nature of the system to prevent misunderstand-

ings or inappropriate attachments 

1.4 Our Contribution 

In this paper, we present a novel multi-layered guardrail system designed specifically 
for healthcare conversational AI. Our approach integrates multiple safety mechanisms 
at different stages of the conversation pipeline, allowing for fine-grained control over the 
LLM’s outputs while preserving its ability to engage in natural, context-aware dialogue. 
We focus on creating a system that can exhibit empathy, build trust, and provide emotional 
support, all while strictly adhering to ethical guidelines and maintaining clear boundaries 
about its AI nature. 

Our system incorporates several innovative features: 

7. A multi-layered architecture with multiple checkpoints for ensuring safe and 
appropriate interactions 

8. Dynamic prompt engineering that adapts to the specific context and intent of each 
user input 

9. Integration of external, up-to-date medical knowledge to supplement the LLM’s 
training 

10. Advanced filtering and confidence scoring mechanisms to catch potential safety 
violations 

11. A comprehensive evaluation framework that assesses both the safety and the 
conversational quality of the system 

By addressing these challenges, our work contributes to the ongoing discourse on 
responsible AI deployment in sensitive domains like healthcare. We aim to demonstrate 
that with careful design and implementation, LLMs can be effectively constrained to 
provide valuable support to patients while maintaining high standards of safety and 
ethical conduct. 

The rest of this paper is organized as follows: Sect. 2 provides a comprehensive 
review of related work. Section 3 details our system architecture. Section 4 elaborates 
on the implementation of our guardrail system. Section 5 describes our experimental 
evaluation. Section 6 discusses the results and potential impact of our system. Finally, 
Sect. 7 concludes the paper and suggests directions for future research. 

2 Related Work 

2.1 Evolution of Conversational AI in Healthcare 

The journey of conversational AI in healthcare began with simple rule-based systems like 
ELIZA [1], developed by Joseph Weizenbaum in the 1960s. ELIZA used pattern match-
ing to simulate a psychotherapist, marking a significant milestone in human-computer
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interaction by demonstrating that even simple algorithms could create the illusion of 
understanding in specific contexts. However, these systems lacked true understanding, 
which limited their practical application in healthcare. 

The next generation of chatbots, such as ALICE (Artificial Linguistic Internet Com-
puter Entity) [9], introduced more sophisticated pattern matching and knowledge bases. 
Developed by Richard Wallace in the 1990s, ALICE used AIML (Artificial Intelli-
gence Markup Language) to enable more varied and contextually appropriate responses. 
This approach allowed for more dynamic conversations but still struggled with truly 
understanding user intent, as it relied heavily on pre-programmed responses. 

The advent of machine learning, particularly deep learning, marked a significant 
leap forward in healthcare AI capabilities. Systems like IBM Watson [10] show-
cased AI’s potential to process vast amounts of medical literature and assist in clini-
cal decision-making. While these systems demonstrated the ability to analyze natural 
language and provide evidence-based recommendations, they still faced challenges in 
natural conversation and emotional understanding, which are crucial for patient-facing 
applications. 

Recent advancements with neural conversation models [11], based on sequence-to-
sequence learning and transformer networks, have improved the fluency and coherence 
of AI-generated responses, yet they continue to struggle with consistency in long con-
versations, task-oriented dialogues, and ensuring the factual accuracy and safety of their 
outputs. 

2.2 Large Language Models and Their Impact 

The introduction of large language models like GPT-3 (Generative Pre-trained Trans-
former 3) [2] has revolutionized the field of conversational AI. These models, trained on 
enormous datasets of human-generated text, exhibit unprecedented capabilities in natural 
language understanding and generation. They can engage in open-ended conversations, 
demonstrate contextual understanding, and even show signs of emergent reasoning [12]. 

The scale and architecture of these models allow them to capture complex patterns 
in language use, resulting in more coherent and contextually appropriate responses com-
pared to their predecessors. This capability is particularly valuable in healthcare contexts, 
where conversations often involve complex medical concepts and require sensitivity to 
patient emotions and concerns. 

In healthcare contexts, LLMs have shown promise in several areas: 

1. Generating empathetic responses [13]: LLMs can craft responses that acknowledge 
and validate patient emotions, potentially improving the supportive capacity of AI 
systems. 

2. Explaining complex medical concepts in lay terms [14]: The models’ ability to 
rephrase and simplify information can aid in patient education and improve health 
literacy. 

3. Assisting in mental health support [15]: Early applications have shown potential 
in providing initial mental health screening and support, although with careful 
limitations to ensure appropriate escalation to human professionals. 

4. Aiding in clinical documentation [16]: LLMs can help summarize and structure 
clinical notes, potentially reducing administrative burden on healthcare providers.
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However, the deployment of LLMs in healthcare also raises significant concerns. 
LLMs pose several risks in the medical field, including generating plausible but incor-
rect information (hallucination), perpetuating biases from their training data, and rais-
ing privacy concerns by potentially reproducing sensitive information. They may lack 
grounding in current medical knowledge and best practices, which could lead to the dis-
semination of outdated or inaccurate advice. Without proper constraints, these models 
might also generate harmful advice that could be mistakenly interpreted as legitimate 
medical guidance. These challenges underscore the need for robust safety measures and 
ethical guidelines in the deployment of LLMs in healthcare settings. 

2.3 Safety and Ethical Considerations in Healthcare AI 

As AI systems become more sophisticated and their use in healthcare more widespread, 
ensuring their safe and ethical use has become a critical area of research and policy 
development. 

Bickmore et al. [14] outlined key patient and consumer safety considerations for 
health chatbots, emphasizing several crucial points: 

1. Clear disclosure of AI identity: Users should always be aware that they are interacting 
with an AI system, not a human healthcare provider. 

2. Mechanisms for escalation to human professionals: AI systems should have clear 
pathways for directing users to human healthcare providers when appropriate. 

3. Robust privacy protections: Given the sensitive nature of health information, AI 
systems must adhere to strict data protection standards. 

4. Transparency about capabilities and limitations: Users should be informed about what 
the AI system can and cannot do to manage expectations and prevent misuse. 

5. Regular updates and monitoring: Healthcare AI systems should be continuously 
monitored and updated to reflect current medical knowledge and best practices. 

Char et al. [17] discussed the ethical implications of AI in healthcare, highlighting 
several key issues: 

1. Transparency and explainability: The “black box” nature of many AI systems, 
particularly deep learning models, raises concerns about accountability and trust. 

2. Accountability: Determining responsibility in cases where AI systems contribute to 
medical errors or adverse outcomes is a complex challenge. 

3. Potential for exacerbating health disparities: If not carefully designed and imple-
mented, AI systems could worsen existing inequities in healthcare access and 
outcomes. 

4. Informed consent: The use of AI in healthcare raises new questions about what patients 
need to know and understand to give truly informed consent. 

5. Impact on the patient-provider relationship: There are concerns that increased reliance 
on AI could depersonalize healthcare and erode the crucial bond between patients 
and their healthcare providers. 

6. Data privacy and security: The large-scale data collection and analysis required for 
many AI systems raises significant privacy concerns.
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These ethical considerations emphasize the need for careful and thoughtful devel-
opment, deployment, and regulation of AI systems in healthcare settings. They also 
highlight the importance of interdisciplinary collaboration between AI researchers, 
healthcare professionals, ethicists, and policymakers to ensure that AI technologies are 
developed and used in ways that benefit patients and society as a whole. 

2.4 Approaches to Constraining LLMs 

Various approaches have been proposed to make LLMs safer and more reliable, espe-
cially in sensitive domains like healthcare. These methods aim to address the chal-
lenges of maintaining accuracy, ensuring safety, and preserving ethical standards while 
leveraging the powerful capabilities of LLMs. 

Fine-Tuning on Domain-Specific Datasets [18] 
This approach involves further training of pre-trained LLMs on carefully curated, 
domain-specific datasets. In healthcare, this might include medical textbooks, clini-
cal guidelines, and anonymized patient-doctor conversations. Fine-tuning can improve 
model performance on targeted tasks and reduce the likelihood of generating inappro-
priate content. Using domain-specific models enhances knowledge and adherence to 
terminology and best practices in fields like healthcare. However, they require large, 
high-quality datasets, which are challenging to obtain due to privacy concerns, and may 
sacrifice flexibility and generalization, while not addressing hallucination. 

Prompt Engineering Techniques [19] 
This method involves carefully crafting input prompts to guide the LLM’s behavior 
and outputs. In healthcare applications, prompts might include specific instructions 
about maintaining patient confidentiality, avoiding diagnosis, or providing emotional 
support. Implementing dynamic, context-specific control of model outputs without mod-
ifying the underlying model offers flexibility and easy updates. However, the effects can 
be inconsistent, particularly with complex instructions, and may not generalize well. 

Rule-Based Filtering and Content Moderation [20] 
This approach involves applying predefined rules to filter or modify the LLM’s out-
puts. In healthcare, this might include blocking specific terms related to diagnosis or 
treatment recommendations, or flagging responses that mention certain medications 
or procedures. Providing a clear, interpretable system for controlling outputs allows for 
easy auditing and modification. However, this approach can be overly rigid with context-
dependent cases, computationally expensive with many complex rules, and may reduce 
the naturalness of conversations if applied too aggressively. 

Use of Smaller, Task-Specific Models for Control [21] 
This method involves using additional, smaller models to control various aspects of the 
LLM’s output. For example, a classification model might be used to detect the intent 
of user queries, while another model might assess the safety of the LLM’s proposed
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responses. Fine-grained control over model behaviors and the ability to leverage spe-
cialized models for specific tasks or datasets are key advantages. However, this approach 
increases system complexity, computational requirements and response latency. 

Retrieval-Augmented Generation 
This approach involves combining LLMs with information retrieval systems. The LLM 
generates responses based not only on its pre-trained knowledge but also on relevant 
information retrieved from a curated knowledge base. The approach offers up-to-date, 
accurate information, improved traceability, and reduced hallucination by grounding 
responses in verified sources. However, it requires maintaining a comprehensive knowl-
edge base, may struggle with synthesizing multiple sources, and can increase response 
latency. 

Reinforcement Learning from Human Feedback (RLHF) 
This method involves fine-tuning LLMs using reinforcement learning, where the reward 
signal is derived from human feedback. This can help align the model’s outputs with 
human preferences and values. Employing this technique improves adherence to guide-
lines and supports ongoing updates based on real use. However, it requires significant 
human feedback, can introduce new biases, and may struggle to generalize across diverse 
use cases. 

Our work builds on these approaches while introducing a novel multi-layered archi-
tecture specifically designed for healthcare applications. We aim to create a system 
that can maintain the engaging, empathetic qualities of LLM-based conversation while 
ensuring strict adherence to medical best practices and ethical guidelines. By combining 
multiple safety mechanisms, including dynamic prompt engineering, content filtering, 
and integration with external knowledge bases, we seek to address the limitations of 
individual approaches and provide a more robust, flexible system for safe deployment 
of LLMs in healthcare contexts. 

3 System Architecture 

Our proposed system consists of five main components, each designed to contribute 
to safe, effective, and engaging conversations in healthcare contexts. The multi-layered 
architecture allows for multiple conversational checkpoints, ensuring a high level of 
safety while maintaining natural and helpful interactions. 

3.1 Large Language Model Core 

At the heart of our system is a large language model specifically developed for healthcare 
applications. We start with a pre-trained model based on the Transformer architecture, 
similar to GPT-4 [2], and fine-tune it on a carefully curated dataset consisting of:

• Patient education materials from leading health organizations
• Anonymized and ethically sourced conversations
• Guidelines and best practices for patient communication from medical associations
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The fine-tuning process aims to imbue the model with domain-specific knowledge 
while also aligning its outputs with established medical communication practices. We 
use a combination of supervised fine-tuning and reinforcement learning from human 
feedback (RLHF) to optimize the model’s performance. 

3.2 Multi-layer Guardrail System 

This is the core of our safety framework, consisting of three sub-components that work 
in concert to ensure safe and appropriate interactions: 

Pre-processing Layer 
This layer focuses on input sanitization and initial safety checks. It serves as the first 
line of defense against potential safety violations. 

The key functions of this layer include detecting and redacting Personally Identifiable 
Information (PII), identifying harmful content such as self-harm, threats and abusive 
language, classifying intent to guide further processing, and recognizing extraneous 
topics for improved focus and relevance. To do so we leverage a combination of smaller 
task-specific models as well as vector store matching. 

LLM Interaction Layer 
This layer manages the direct interaction with the LLM via the Prompt Engi-
neering Module, including dynamic prompt adjustment and multi-turn conversation 
management. 

It involves real-time prompt adjustment based on detected intents and conversation 
context, enforcing boundaries to ensure the AI doesn’t substitute professional medical 
advice, and managing conversation flow to maintain coherence and safety across multiple 
interactions. 

Post-processing Layer 
This layer provides a final safety check on LLM-generated content before it reaches 
the user. It uses content filtering to catch potential safety violations missed by earlier 
layers, fact-checking against a verified medical knowledge base, and applying confidence 
scoring to ensure responses meet the required safety threshold. 

Each layer incorporates multiple mechanisms to ensure safe and appropriate 
interactions, which will be detailed in the next section. 

4 Methodology 

Our evaluation consists of four main components: 

Safety Violation Detection 
The primary objective here is to assess the system’s ability to prevent potential safety 
violations. This will involve creating a challenging test set of user inputs specifically 
designed to test the limits of the system’s safety constraints. A team of healthcare pro-
fessionals and AI ethics experts will then manually review the system’s outputs. The
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evaluation will focus on the rate of potential safety violations, classify these violations 
by type and assess how effective different guardrail layers are in catching these violations. 

Information Accuracy 
The goal is to evaluate the accuracy of the medical information provided by the system. A 
random sampling of the system’s responses will be fact-checked against current medical 
literature and guidelines by a team of medical professionals from various specialties. The 
evaluation metrics will include the accuracy rate of the provided medical information, 
the types and severity of inaccuracies, and the effectiveness of the knowledge integration 
layer in ensuring the system provides up-to-date information. 

Conversation Naturalness and Empathy 
We assess the quality of the system’s conversations in terms of naturalness and empathy. 
A blind comparison study will be conducted involving healthcare professionals who will 
evaluate the system’s conversations against those of other commercial health chatbots 
and transcripts of human healthcare providers. The study will use standardized scenarios 
to ensure consistency across evaluations, and the conversations will be rated on a 5-point 
Likert scale based on attributes like naturalness, empathy, clarity, and appropriateness. 

User Experience Study 
The focus here is to gather feedback from actual users on the system’s perceived safety, 
helpfulness, and ease of use. This will involve a pilot study with patients who have 
various chronic conditions, where they will interact with the system. Feedback will 
be collected through surveys and semi-structured interviews, with evaluation metrics 
such as user satisfaction ratings, perceived helpfulness in managing chronic conditions, 
comfort level in discussing health concerns with the AI system, and qualitative feedback 
on the system’s strengths and areas for improvement. 

4.1 Ethical Considerations 

Our experimental design prioritizes user safety and privacy. We ensure that all par-
ticipants are fully informed about the nature of the study and the AI system they are 
interacting with. They are clearly instructed on the limitations of the AI system, and 
the importance of consulting healthcare professionals. Strict protocols have been put in 
place to protect user data and ensure anonymity. We also endeavor to have a diverse 
representation in our user studies to assess the system’s performance across different 
demographics. 

4.2 Limitations 

We acknowledge several limitations in our experimental design. The user experience 
study is limited to a four-week period, which may not capture long-term effects or 
rare edge cases. Despite efforts to ensure diversity, our user group may not be fully 
representative of all potential users. Lastly, user engagement and satisfaction may be 
influenced by the novelty of interacting with an AI health assistant.
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5 Conclusion 

The multi-layered guardrail system presented in this paper represents a novel approach 
to addressing the challenges of deploying LLMs in healthcare contexts. As AI contin-
ues to advance, frameworks like ours will be crucial in ensuring that these powerful 
technologies are deployed responsibly in sensitive domains like healthcare. 

The journey towards safe and effective AI-assisted healthcare support is ongoing, 
requiring continued collaboration between AI researchers, healthcare professionals, ethi-
cists, and patients. By pursuing this research agenda, we can work towards a future where 
AI serves as a valuable tool in healthcare, augmenting and supporting human care to 
ultimately contribute to improved patient outcomes and experiences. 

Disclosure of Interests. Authors are employees of AmalgamRx. 
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