Hamid R. Arabnia · Leonidas Deligiannidis · Soheyla Amirian · Farzan Shenavarmasouleh · Farid Ghareh Mohammadi · David de la Fuente (Eds.)

Communications in Computer and Information Science

2252

Artificial Intelligence and Applications

26th International Conference, ICAI 2024 Held as Part of the World Congress in Computer Science Computer Engineering and Applied Computing, CSCE 2024 Las Vegas, NV, USA, July 22–25, 2024, Revised Selected Papers

Communications in Computer and Information Science

2252

Series Editors

Gang Li¹⁰, School of Information Technology, Deakin University, Burwood, VIC, Australia

Joaquim Filipe, Polytechnic Institute of Setúbal, Setúbal, Portugal Zhiwei Xu, Chinese Academy of Sciences, Beijing, China

Rationale

The CCIS series is devoted to the publication of proceedings of computer science conferences. Its aim is to efficiently disseminate original research results in informatics in printed and electronic form. While the focus is on publication of peer-reviewed full papers presenting mature work, inclusion of reviewed short papers reporting on work in progress is welcome, too. Besides globally relevant meetings with internationally representative program committees guaranteeing a strict peer-reviewing and paper selection process, conferences run by societies or of high regional or national relevance are also considered for publication.

Topics

The topical scope of CCIS spans the entire spectrum of informatics ranging from foundational topics in the theory of computing to information and communications science and technology and a broad variety of interdisciplinary application fields.

Information for Volume Editors and Authors

Publication in CCIS is free of charge. No royalties are paid, however, we offer registered conference participants temporary free access to the online version of the conference proceedings on SpringerLink (http://link.springer.com) by means of an http referrer from the conference website and/or a number of complimentary printed copies, as specified in the official acceptance email of the event.

CCIS proceedings can be published in time for distribution at conferences or as post-proceedings, and delivered in the form of printed books and/or electronically as USBs and/or e-content licenses for accessing proceedings at SpringerLink. Furthermore, CCIS proceedings are included in the CCIS electronic book series hosted in the SpringerLink digital library at http://link.springer.com/bookseries/7899. Conferences publishing in CCIS are allowed to use Online Conference Service (OCS) for managing the whole proceedings lifecycle (from submission and reviewing to preparing for publication) free of charge.

Publication process

The language of publication is exclusively English. Authors publishing in CCIS have to sign the Springer CCIS copyright transfer form, however, they are free to use their material published in CCIS for substantially changed, more elaborate subsequent publications elsewhere. For the preparation of the camera-ready papers/files, authors have to strictly adhere to the Springer CCIS Authors' Instructions and are strongly encouraged to use the CCIS LaTeX style files or templates.

Abstracting/Indexing

CCIS is abstracted/indexed in DBLP, Google Scholar, EI-Compendex, Mathematical Reviews, SCImago, Scopus. CCIS volumes are also submitted for the inclusion in ISI Proceedings.

How to start

To start the evaluation of your proposal for inclusion in the CCIS series, please send an e-mail to ccis@springer.com

Hamid R. Arabnia · Leonidas Deligiannidis · Soheyla Amirian · Farzan Shenavarmasouleh · Farid Ghareh Mohammadi · David de la Fuente Editors

Artificial Intelligence and Applications

26th International Conference, ICAI 2024 Held as Part of the World Congress in Computer Science Computer Engineering and Applied Computing, CSCE 2024 Las Vegas, NV, USA, July 22–25, 2024 Revised Selected Papers

Editors
Hamid R. Arabnia
The University of Georgia
Athens, GA, USA

Soheyla Amirian D Pace University New York, NY, USA

Farid Ghareh Mohammadi D Mayo Clinic Jacksonville, FL, USA Leonidas Deligiannidis

Wentworth Institute of Technology
Boston, MA, USA

Farzan Shenavarmasouleh D MediaLab Inc. Lawrenceville, GA, USA

David de la Fuente D University of Oviedo Oviedo, Asturias, Spain

ISSN 1865-0929 ISSN 1865-0937 (electronic) Communications in Computer and Information Science ISBN 978-3-031-86622-7 ISBN 978-3-031-86623-4 (eBook) https://doi.org/10.1007/978-3-031-86623-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Preface

It is our great pleasure to introduce this collection of research papers presented at the 26th International Conference on Artificial Intelligence (ICAI 2024). This volume features a selection of papers showcasing significant advancements and innovative research in artificial intelligence. The ICAI 2024 conference was held as part of the federated 2024 Congress on Computer Science, Computer Engineering, and Applied Computing (CSCE 2024), which took place from July 22 to July 25, 2024, in Las Vegas, Nevada, USA.

The CSCE 2024 Congress brought together papers from a diverse array of communities, including researchers from universities, corporations, and government agencies. Accepted papers are published by Springer Nature, and the proceedings showcase solutions to key challenges in various critical areas of Computer Science, Computer Engineering, and Applied Computing.

Computer Science (CS) is the study of computational systems, data processing, information management, and automation. Many applications in CS focus on solving problems that would be impossible or extremely difficult to address without the use of computers. It serves as a bridge between computational science and other scientific fields. The interdisciplinary nature of CS involves leveraging computers to understand and solve complex challenges, making it the science of using computers to advance scientific discovery. Computer Engineering (CE), on the other hand, integrates aspects of computer science, electronic engineering, and electrical engineering. It encompasses the design and production of computer hardware, such as chips, servers, supercomputers, embedded systems, and communication systems, among others.

Considering the above broad outline, the CSCE 2024 Congress was composed of the following focused conferences:

Applied Cognitive Computing (ACC); Bioinformatics & Computational Biology (BIOCOMP); Biomedical Engineering (BIOENG); Scientific Computing (CSC); e-Learning, e-Business, Enterprise Information Systems, & e-Government (EEE); Embedded Systems, Cyber-physical Systems, & Applications (ESCS); Foundations of Computer Science (FCS); Frontiers in Education (FECS); Grid, Cloud, & Cluster Computing (GCC); Health Informatics (HIMS); Artificial Intelligence (ICAI); Data Science (ICDATA); Emergent Quantum Technologies (ICEQT); Internet Computing & IoT (ICOMP); Wireless Networks (ICWN); Information & Knowledge Engineering (IKE); Image Processing, Computer Vision, & Pattern Recognition (IPCV); Modeling, Simulation & Visualization Methods (MSV); Parallel & Distributed Processing Techniques & Applications (PDPTA); Security & Management (SAM); and Software Engineering Research & Practice (SERP). The scope of each track can be found at: https://www.american-cse.org/csce2024/conferences

The primary objective of the CSCE Congress and its associated conferences is to foster opportunities for cross-fertilization between the fields of Computer Science (CS) and Computer Engineering (CE). The CSCE Congress is deeply committed to promoting diversity and eliminating discrimination, both in its role as a conference organizer and

as a service provider. Our goal is to create an inclusive culture that respects and values differences, promotes dignity, equality, and diversity, and encourages individuals to reach their full potential. We are also dedicated, wherever possible, to organizing a conference that represents the global community. We sincerely hope that we have succeeded in achieving these important objectives.

The Steering Committee and the Program Committee would like to extend their gratitude to all the authors who submitted papers for consideration. This year's conference received submissions from 67 countries, with approximately 56% of them coming from outside the USA. Each submitted paper underwent a rigorous peer-review process, with at least two experts (an average of 2.4 referees per paper) evaluating the submissions based on originality, significance, clarity, impact, and soundness. In cases where reviewers' recommendations were contradictory, a program committee member was tasked with making the final decision, often consulting additional referees for further guidance. The Congress followed the guidelines of COPE (Committee on Publication Ethics):

- Typical submissions underwent a single-blind peer review process, in which the authors remained unaware of the identities of the reviewers, while the reviewers were informed of the authors' identities.
- Papers authored by one or more members of the program committee, including cochairs, were subjected to a double-blind peer review process, ensuring that neither the authors nor the reviewers were aware of each other's identities or affiliations.

The ICAI 2024 Conference received 376 submissions, with 75 papers accepted, reflecting a 19% acceptance rate. This volume includes only 41 of the accepted papers.

We are deeply grateful to the many colleagues who contributed their time and effort to organizing the Congress. In particular, we extend our thanks to the members of the Program Committee, the Steering Committee, the referees, and the Chairs and organizers of individual sessions and conferences. We would also like to express our appreciation to the primary sponsor of the conference, the American Council on Science & Education. The list of members of the Program Committee for each track can be found at: https://www.american-cse.org/csce2024/committees

We extend our heartfelt gratitude to all the speakers and authors for their valuable contributions. We would also like to thank the following individuals and organizations for their support: the staff at the Luxor Hotel, the staff of Springer Nature, Pablo Rivas (Baylor University, Waco, Texas), and Ken Ferens (University of Manitoba, Canada).

We are pleased to present the proceedings of ICAI 2024. These proceedings represent a collection of outstanding research contributions that reflect the diversity and depth of work in Artificial Intelligence.

Hamid R. Arabnia Leonidas Deligiannidis Soheyla Amirian Farzan Shenavarmasouleh Farid Ghareh Mohammadi David de la Fuente Jose A. Olivas

Organization

Steering Committee – Co-chairs (CSCE 2024)

Hamid R. Arabnia University of Georgia, USA

Leonidas Deligiannidis Wentworth Institute of Technology, USA
Fernando G. Tinetti Universidad Nacional de La Plata, Argentina
Quoc-Nam Tran Southeastern Louisiana University, USA

Co-editors of ICAI 2024 Proceedings – Publication Co-chairs

Hamid R. Arabnia (Co-chair, University of Georgia, USA

CSCE 2024)

Leonidas Deligiannidis (Co-chair, Wentworth Institute of Technology, USA

CSCE 2024)

Soheyla Amirian (Session Pace University, USA

Co-chair)

Farzan Shenavarmasouleh Medialab Inc., USA

(Session Co-chair)

Farid Ghareh Mohammadi Mayo Clinic, USA

(Session Co-chair)

David de la Fuente (Session University of Oviedo, Spain

Co-chair)

Jose A. Olivas (Session Co-chair) University of Castilla - La Mancha, Spain

Members of Steering Committee (CSCE 2024)

Babak Akhgar Sheffield Hallam University, UK

Abbas M. Al-Bakry University of IT & Communications, Iraq

Emeritus Nizar Al-Holou University of Detroit Mercy, USA Hamid R. Arabnia University of Georgia, USA

Rajab Challoo Texas A&M University-Kingsville, USA

Chien-Fu Cheng Tamkang University, Taiwan

Hyunseung Choo Sungkyunkwan University, South Korea Kevin Daimi University of Detroit Mercy, USA

Leonidas Deligiannidis Wentworth Institute of Technology, USA

Eman M. El-Sheikh University of West Florida, USA

Mary Mehrnoosh University of California Los Angeles, USA Eshaghian-Wilner

David L. Foster Kettering University, USA

Henry Hexmoor Southern Illinois University at Carbondale, USA Ching-Hsien (Robert) Hsu Chung Hua University, Taiwan; and Tianjin

University of Technology, China

James J. (Jong Hyuk) Park SeoulTech, South Korea Mohammad S. Obaidat University of Jordan, Jordan

Marwan Omar Illinois Institute of Technology, USA Shahram Rahimi Mississippi State University, USA Gerald Schaefer Loughborough University, UK

Fernando G. Tinetti Universidad Nacional de La Plata, Argentina Ouoc-Nam Tran Southeastern Louisiana University, USA

Shiuh-Jeng Wang Central Police University, Taiwan

Layne T. Watson Virginia Polytechnic Institute & State University,

USA

Chao-Tung Yang Tunghai University, Taiwan Mary Yang University of Arkansas, USA

Research Tracks – Co-chairs (CSCE 2024)

Abeer Alsadoon (Co-chair, Health Charles Sturt University, Australia

Informatics)

Soheyla Amirian (Co-chair, Pace University, USA

Computer Vision & AI)

Hamid R. Arabnia (Co-chair, HPC)

Kevin Daimi (Co-chair, Security) University of Detroit Mercy, USA

Leonidas Deligiannidis (Co-chair, Wentworth Institute of Technology, USA Imaging Science, AI)

Richard Dill (Co-chair, Military US Air Force Institute of Technology, USA and Defense Modeling)

University of Georgia, USA

Ken Ferens (Co-chair, Cognitive University of Manitoba, Canada Computing & AI)

David de la Fuente (Co-chair, University of Oviedo, Spain Information Management)

Farid Ghareh Mohammadi Mayo Clinic, USA

(Co-chair, Computer Vision & AI)

Michael R. Grimaila (Co-chair, US Air Force Institute of Technology, USA Military and Defense

Modeling)

Douglas D. Hodson (Co-chair, Military and Defense Modeling)	US Air Force Institute of Technology, USA
Masahito Ohue (Co-chair, Mathematical Modeling)	Tokyo Institute of Technology, Japan
Jose A. Olivas (Co-chair, Information Management)	University of Castilla - La Mancha, Spain
Javier Ordus (Co-chair, Quantum Computing & AI)	Baylor University, USA
Pablo Rivas (Chair, Quantum Computing & AI)	Baylor University, USA
Farzan Shenavarmasouleh (Co-chair, Computer Vision & AI)	MediaLab Inc, USA
Robert Stahlbock (Co-chair, Data Mining)	Universität Hamburg, Germany
Masami Takata (Co-chair, Mathematical Modeling)	Nara Women's University, Japan
Quoc-Nam Tran (Co-chair, Education & Bioinformatics)	Southeastern Louisiana University, USA
Nobuaki Yasuo (Co-chair,	Tokyo Institute of Technology, Japan

Program Committee – Artificial Intelligence (ICAI 2024)

Nobuaki Yasuo (Co-chair, Mathematical Modeling)

Abbas M. Al-Bakry	University of IT and Communications, Iraq
Emeritus Nizar Al-Holou	University of Detroit Mercy, USA
Soheyla Amirian (Co-Chair,	Pace University, USA
Computer Vision & AI)	
Emeritus Hamid R. Arabnia	University of Georgia, USA
Mehran Asadi	Lincoln University, USA
Alireza Bagheri Rajeoni	University of South Carolina, USA
Juan Jose Martinez Castillo	Universidad Nacional Abierta, Venezuela
Arianna D'Ulizia	Institute of Research on Population and Social
	Policies, National Research Council of Italy,
	Italy
Emeritus Kevin Daimi	University of Detroit Mercy, USA
Zhangisina Gulnur	Central Asian University, Kazakhstan; and
Davletzhanovna	International Academy of Informatization,
	Kazakhstan
Leonidas Deligiannidis	Wentworth Institute of Technology, USA
Roger Dziegiel	US Air Force Research Lab, USA

Mary Mehrnoosh University of Southern California, USA; and Eshaghian-Wilner University of California Los Angeles, USA Ken Ferens University of Manitoba, Canada David de la Fuente (Chapter University of Oviedo, Spain Editor) Farid Ghareh Mohammadi Mayo Clinic, USA (Co-Chair, Computer Vision & AI) George A. Gravvanis Democritus University of Thrace, Greece Michael R. Grimaila US Air Force Institute of Technology, USA US Air Force Institute of Technology, USA Douglas D. Hodson Georgian Technical University, Georgia George Jandieri Byung-Gyu Kim Sun Moon University, South Korea Tai-hoon Kim University of Tasmania, Australia Elena B. Kozerenko Russian Academy of Sciences, Russia Sun Yat-sen University, China Guoming Lai Peter M. LaMonica US Air Force Research Lab. USA Hyo Jong Lee Chonbuk National University, South Korea Changyu Liu South China Agricultural University, China; and Carnegie Mellon University, USA Universiti Malaysia Perlis, Malaysia Muhammad Naufal Bin Mansor Andrew Marsh HoIP Telecom Ltd. UK Mohamed Arezki Mellal M'Hamed Bougara University of Boumerdès, Algeria California State University, Fullerton, USA Ali Mostafaeipour Houssem Eddine Nouri Institut Supérieur de Gestion de Tunis, University of Tunis. Tunisia Ambrose Alli University, Nigeria Robert Ehimen Okonigene Jose A. Olivas (Chapter Editor) University of Castilla - La Mancha, Spain Marwan Omar Illinois Institute of Technology, USA Javier Ordus (Co-Chair, Quantum Baylor University, USA Computing & AI) SeoulTech, South Korea James J. (Jong Hyuk) Park Xuewei Oi University of California, Riverside, USA Charlie (Seungmin) Rho (Chapter Sejong University, South Korea Editor) Pablo Rivas (Co-Chair, Quantum Baylor University, USA Computing & AI) Abdel-Badeeh M. Salem Ain Shams University, Egypt

MediaLab Inc, USA

Ashu M. G. Solo (Publicity) Maverick Technologies America Inc., USA

Farzan Shenavarmasouleh

AI)

(Co-Chair, Computer Vision &

Tse Guan Tan

Universiti Malaysia Kelantan, Malaysia

Fernando G. Tinetti

Hahanov Vladimir

Kharkiv National University of Radio Electronics,
Ukraine

Shiuh-Jeng Wang

Central Police University, Taiwan

Todd Waskiewicz

US Air Force Research Lab, USA

Virginia Polytechnic Institute & State University,
USA

Xiaokun Yang University of Houston - Clear Lake, USA Jane You Hong Kong Polytechnic University, China

Deep Convolutional Neural Networks, ANNs, and Applications

Taming Large Language Models for Healthcare – A Multi-layered System

Bharath Sudharsan^(⊠), Ryan Kosiba, Aishwarya Parthasarathi, and Rohan Paul Richard

AmalgamRx, Wilmington, DE, USA bsudharsan@amalgamrx.com

Abstract. This paper presents a novel framework for implementing robust safety guardrails in conversational AI systems powered by large language models (LLMs) for healthcare applications. We propose a multi-layered approach that combines LLM-based classifiers, vector store matching, and dynamic prompt engineering to ensure safe and ethical interactions. Our system, designed to support patients with chronic conditions, demonstrates how LLMs can be effectively constrained to provide helpful information while avoiding potential risks associated with medical misinformation or inappropriate advice. We evaluate our framework using a comprehensive test set, demonstrating its efficacy in maintaining safety without significantly compromising the naturalness of conversations. Our findings contribute to the ongoing discourse on responsible AI deployment in sensitive domains like healthcare, particularly in creating systems that can build rapport and trust while adhering to strict ethical guidelines. These outcomes suggest that our multi-layered guardrail system offers a promising approach to harnessing the power of LLMs in healthcare while prioritizing patient safety and ethical considerations.

Keywords: Large Language Models · Healthcare AI · Safety Guardrails · Conversational AI · Ethical AI · Patient Support · Chronic Disease Management

1 Introduction

The advent of large language models (LLMs) has opened new possibilities for creating more natural and context-aware conversational AI systems in healthcare [1]. These models, trained on vast corpora of human-generated text, have demonstrated unprecedented capabilities in understanding and generating human-like text, including the ability to convey empathy, build rapport, and engage in nuanced communication [2]. The potential applications of LLMs in healthcare are vast, ranging from patient education and support to assisting healthcare professionals in clinical decision-making and administrative tasks.

However, the deployment of such powerful models in medical contexts poses significant risks, including the potential for generating misinformation, providing inappropriate medical advice, or violating patient privacy [3]. These risks are particularly acute in healthcare, where the consequences of misinformation or inappropriate advice can

have serious implications for patient health and well-being. As such, the development of robust safety mechanisms is paramount to the responsible deployment of LLM-powered systems in healthcare settings.

1.1 Evolution of Conversational AI in Healthcare

The evolution of human-AI chat experiences in healthcare has been marked by significant advancements over the past decades. Early rule-based systems like ELIZA [4] gave way to more sophisticated statistical models, and now to neural network-based approaches that can engage in more natural, context-aware conversations [5]. These early systems, while groundbreaking, were limited in their ability to understand context, generate natural language, and provide truly personalized responses.

The introduction of machine learning techniques, particularly deep learning, marked a significant leap forward in the capabilities of conversational AI systems. Models like recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) improved the ability of AI systems to maintain context over longer conversations and generate more coherent responses. However, these models still struggled with long-term dependencies and often produced repetitive or inconsistent outputs in extended dialogues.

LLMs represent the latest leap in this evolution, offering the potential for AI assistants that can understand and respond to the nuanced emotional and informational needs of patients and caregivers [6]. Unlike their predecessors, LLMs can generate fluent, contextually appropriate responses across a wide range of topics, making them particularly well-suited for the complex and varied nature of healthcare conversations.

1.2 Challenges and Risks of LLMs in Healthcare

However, the very capabilities that make LLMs so promising also present unique challenges in healthcare contexts. Their ability to generate fluent, human-like text raises concerns about users potentially forming inappropriate emotional attachments or mistaking AI-generated advice for professional medical opinion [7]. This risk is particularly pronounced in healthcare, where patients may be vulnerable and seek authoritative guidance.

Additionally, the black-box nature of these models makes it difficult to guarantee their outputs will always align with medical best practices and ethical guidelines [8]. LLMs can sometimes generate plausible-sounding but incorrect or harmful information, a phenomenon known as "hallucination." In a healthcare context, such hallucinations could lead to dangerous misinformation or inappropriate medical advice.

Furthermore, LLMs trained on large, diverse datasets may inadvertently perpetuate biases present in their training data. This could lead to disparities in the quality of information or support provided to different demographic groups, potentially exacerbating existing health inequities.

1.3 The Need for Robust Safety Guardrails

Given these challenges, there is a clear need for robust safety mechanisms to govern the deployment of LLMs in healthcare settings. These mechanisms must be capable of:

- 1. Ensuring the accuracy and reliability of medical information provided by the system
- 2. Preventing the generation of inappropriate or potentially harmful advice
- 3. Maintaining clear boundaries between AI support and professional medical care
- 4. Protecting patient privacy and confidentiality
- 5. Mitigating potential biases in the system's responses
- 6. Providing transparency about the AI nature of the system to prevent misunderstandings or inappropriate attachments

1.4 Our Contribution

In this paper, we present a novel multi-layered guardrail system designed specifically for healthcare conversational AI. Our approach integrates multiple safety mechanisms at different stages of the conversation pipeline, allowing for fine-grained control over the LLM's outputs while preserving its ability to engage in natural, context-aware dialogue. We focus on creating a system that can exhibit empathy, build trust, and provide emotional support, all while strictly adhering to ethical guidelines and maintaining clear boundaries about its AI nature.

Our system incorporates several innovative features:

- A multi-layered architecture with multiple checkpoints for ensuring safe and appropriate interactions
- 8. Dynamic prompt engineering that adapts to the specific context and intent of each user input
- 9. Integration of external, up-to-date medical knowledge to supplement the LLM's training
- Advanced filtering and confidence scoring mechanisms to catch potential safety violations
- 11. A comprehensive evaluation framework that assesses both the safety and the conversational quality of the system

By addressing these challenges, our work contributes to the ongoing discourse on responsible AI deployment in sensitive domains like healthcare. We aim to demonstrate that with careful design and implementation, LLMs can be effectively constrained to provide valuable support to patients while maintaining high standards of safety and ethical conduct.

The rest of this paper is organized as follows: Sect. 2 provides a comprehensive review of related work. Section 3 details our system architecture. Section 4 elaborates on the implementation of our guardrail system. Section 5 describes our experimental evaluation. Section 6 discusses the results and potential impact of our system. Finally, Sect. 7 concludes the paper and suggests directions for future research.

2 Related Work

2.1 Evolution of Conversational AI in Healthcare

The journey of conversational AI in healthcare began with simple rule-based systems like ELIZA [1], developed by Joseph Weizenbaum in the 1960s. ELIZA used pattern matching to simulate a psychotherapist, marking a significant milestone in human-computer

interaction by demonstrating that even simple algorithms could create the illusion of understanding in specific contexts. However, these systems lacked true understanding, which limited their practical application in healthcare.

The next generation of chatbots, such as ALICE (Artificial Linguistic Internet Computer Entity) [9], introduced more sophisticated pattern matching and knowledge bases. Developed by Richard Wallace in the 1990s, ALICE used AIML (Artificial Intelligence Markup Language) to enable more varied and contextually appropriate responses. This approach allowed for more dynamic conversations but still struggled with truly understanding user intent, as it relied heavily on pre-programmed responses.

The advent of machine learning, particularly deep learning, marked a significant leap forward in healthcare AI capabilities. Systems like IBM Watson [10] show-cased AI's potential to process vast amounts of medical literature and assist in clinical decision-making. While these systems demonstrated the ability to analyze natural language and provide evidence-based recommendations, they still faced challenges in natural conversation and emotional understanding, which are crucial for patient-facing applications.

Recent advancements with neural conversation models [11], based on sequence-to-sequence learning and transformer networks, have improved the fluency and coherence of AI-generated responses, yet they continue to struggle with consistency in long conversations, task-oriented dialogues, and ensuring the factual accuracy and safety of their outputs.

2.2 Large Language Models and Their Impact

The introduction of large language models like GPT-3 (Generative Pre-trained Transformer 3) [2] has revolutionized the field of conversational AI. These models, trained on enormous datasets of human-generated text, exhibit unprecedented capabilities in natural language understanding and generation. They can engage in open-ended conversations, demonstrate contextual understanding, and even show signs of emergent reasoning [12].

The scale and architecture of these models allow them to capture complex patterns in language use, resulting in more coherent and contextually appropriate responses compared to their predecessors. This capability is particularly valuable in healthcare contexts, where conversations often involve complex medical concepts and require sensitivity to patient emotions and concerns.

In healthcare contexts, LLMs have shown promise in several areas:

- Generating empathetic responses [13]: LLMs can craft responses that acknowledge and validate patient emotions, potentially improving the supportive capacity of AI systems.
- 2. Explaining complex medical concepts in lay terms [14]: The models' ability to rephrase and simplify information can aid in patient education and improve health literacy.
- 3. Assisting in mental health support [15]: Early applications have shown potential in providing initial mental health screening and support, although with careful limitations to ensure appropriate escalation to human professionals.
- 4. Aiding in clinical documentation [16]: LLMs can help summarize and structure clinical notes, potentially reducing administrative burden on healthcare providers.

However, the deployment of LLMs in healthcare also raises significant concerns. LLMs pose several risks in the medical field, including generating plausible but incorrect information (hallucination), perpetuating biases from their training data, and raising privacy concerns by potentially reproducing sensitive information. They may lack grounding in current medical knowledge and best practices, which could lead to the dissemination of outdated or inaccurate advice. Without proper constraints, these models might also generate harmful advice that could be mistakenly interpreted as legitimate medical guidance. These challenges underscore the need for robust safety measures and ethical guidelines in the deployment of LLMs in healthcare settings.

2.3 Safety and Ethical Considerations in Healthcare AI

As AI systems become more sophisticated and their use in healthcare more widespread, ensuring their safe and ethical use has become a critical area of research and policy development.

Bickmore et al. [14] outlined key patient and consumer safety considerations for health chatbots, emphasizing several crucial points:

- 1. Clear disclosure of AI identity: Users should always be aware that they are interacting with an AI system, not a human healthcare provider.
- 2. Mechanisms for escalation to human professionals: AI systems should have clear pathways for directing users to human healthcare providers when appropriate.
- 3. Robust privacy protections: Given the sensitive nature of health information, AI systems must adhere to strict data protection standards.
- 4. Transparency about capabilities and limitations: Users should be informed about what the AI system can and cannot do to manage expectations and prevent misuse.
- 5. Regular updates and monitoring: Healthcare AI systems should be continuously monitored and updated to reflect current medical knowledge and best practices.

Char et al. [17] discussed the ethical implications of AI in healthcare, highlighting several key issues:

- 1. Transparency and explainability: The "black box" nature of many AI systems, particularly deep learning models, raises concerns about accountability and trust.
- 2. Accountability: Determining responsibility in cases where AI systems contribute to medical errors or adverse outcomes is a complex challenge.
- Potential for exacerbating health disparities: If not carefully designed and implemented, AI systems could worsen existing inequities in healthcare access and outcomes.
- 4. Informed consent: The use of AI in healthcare raises new questions about what patients need to know and understand to give truly informed consent.
- 5. Impact on the patient-provider relationship: There are concerns that increased reliance on AI could depersonalize healthcare and erode the crucial bond between patients and their healthcare providers.
- Data privacy and security: The large-scale data collection and analysis required for many AI systems raises significant privacy concerns.

These ethical considerations emphasize the need for careful and thoughtful development, deployment, and regulation of AI systems in healthcare settings. They also highlight the importance of interdisciplinary collaboration between AI researchers, healthcare professionals, ethicists, and policymakers to ensure that AI technologies are developed and used in ways that benefit patients and society as a whole.

2.4 Approaches to Constraining LLMs

Various approaches have been proposed to make LLMs safer and more reliable, especially in sensitive domains like healthcare. These methods aim to address the challenges of maintaining accuracy, ensuring safety, and preserving ethical standards while leveraging the powerful capabilities of LLMs.

Fine-Tuning on Domain-Specific Datasets [18]

This approach involves further training of pre-trained LLMs on carefully curated, domain-specific datasets. In healthcare, this might include medical textbooks, clinical guidelines, and anonymized patient-doctor conversations. Fine-tuning can improve model performance on targeted tasks and reduce the likelihood of generating inappropriate content. Using domain-specific models enhances knowledge and adherence to terminology and best practices in fields like healthcare. However, they require large, high-quality datasets, which are challenging to obtain due to privacy concerns, and may sacrifice flexibility and generalization, while not addressing hallucination.

Prompt Engineering Techniques [19]

This method involves carefully crafting input prompts to guide the LLM's behavior and outputs. In healthcare applications, prompts might include specific instructions about maintaining patient confidentiality, avoiding diagnosis, or providing emotional support. Implementing dynamic, context-specific control of model outputs without modifying the underlying model offers flexibility and easy updates. However, the effects can be inconsistent, particularly with complex instructions, and may not generalize well.

Rule-Based Filtering and Content Moderation [20]

This approach involves applying predefined rules to filter or modify the LLM's outputs. In healthcare, this might include blocking specific terms related to diagnosis or treatment recommendations, or flagging responses that mention certain medications or procedures. Providing a clear, interpretable system for controlling outputs allows for easy auditing and modification. However, this approach can be overly rigid with context-dependent cases, computationally expensive with many complex rules, and may reduce the naturalness of conversations if applied too aggressively.

Use of Smaller, Task-Specific Models for Control [21]

This method involves using additional, smaller models to control various aspects of the LLM's output. For example, a classification model might be used to detect the intent of user queries, while another model might assess the safety of the LLM's proposed

responses. Fine-grained control over model behaviors and the ability to leverage specialized models for specific tasks or datasets are key advantages. However, this approach increases system complexity, computational requirements and response latency.

Retrieval-Augmented Generation

This approach involves combining LLMs with information retrieval systems. The LLM generates responses based not only on its pre-trained knowledge but also on relevant information retrieved from a curated knowledge base. The approach offers up-to-date, accurate information, improved traceability, and reduced hallucination by grounding responses in verified sources. However, it requires maintaining a comprehensive knowledge base, may struggle with synthesizing multiple sources, and can increase response latency.

Reinforcement Learning from Human Feedback (RLHF)

This method involves fine-tuning LLMs using reinforcement learning, where the reward signal is derived from human feedback. This can help align the model's outputs with human preferences and values. Employing this technique improves adherence to guidelines and supports ongoing updates based on real use. However, it requires significant human feedback, can introduce new biases, and may struggle to generalize across diverse use cases.

Our work builds on these approaches while introducing a novel multi-layered architecture specifically designed for healthcare applications. We aim to create a system that can maintain the engaging, empathetic qualities of LLM-based conversation while ensuring strict adherence to medical best practices and ethical guidelines. By combining multiple safety mechanisms, including dynamic prompt engineering, content filtering, and integration with external knowledge bases, we seek to address the limitations of individual approaches and provide a more robust, flexible system for safe deployment of LLMs in healthcare contexts.

3 System Architecture

Our proposed system consists of five main components, each designed to contribute to safe, effective, and engaging conversations in healthcare contexts. The multi-layered architecture allows for multiple conversational checkpoints, ensuring a high level of safety while maintaining natural and helpful interactions.

3.1 Large Language Model Core

At the heart of our system is a large language model specifically developed for healthcare applications. We start with a pre-trained model based on the Transformer architecture, similar to GPT-4 [2], and fine-tune it on a carefully curated dataset consisting of:

- Patient education materials from leading health organizations
- · Anonymized and ethically sourced conversations
- Guidelines and best practices for patient communication from medical associations

The fine-tuning process aims to imbue the model with domain-specific knowledge while also aligning its outputs with established medical communication practices. We use a combination of supervised fine-tuning and reinforcement learning from human feedback (RLHF) to optimize the model's performance.

3.2 Multi-layer Guardrail System

This is the core of our safety framework, consisting of three sub-components that work in concert to ensure safe and appropriate interactions:

Pre-processing Layer

This layer focuses on input sanitization and initial safety checks. It serves as the first line of defense against potential safety violations.

The key functions of this layer include detecting and redacting Personally Identifiable Information (PII), identifying harmful content such as self-harm, threats and abusive language, classifying intent to guide further processing, and recognizing extraneous topics for improved focus and relevance. To do so we leverage a combination of smaller task-specific models as well as vector store matching.

LLM Interaction Layer

This layer manages the direct interaction with the LLM via the Prompt Engineering Module, including dynamic prompt adjustment and multi-turn conversation management.

It involves real-time prompt adjustment based on detected intents and conversation context, enforcing boundaries to ensure the AI doesn't substitute professional medical advice, and managing conversation flow to maintain coherence and safety across multiple interactions.

Post-processing Layer

This layer provides a final safety check on LLM-generated content before it reaches the user. It uses content filtering to catch potential safety violations missed by earlier layers, fact-checking against a verified medical knowledge base, and applying confidence scoring to ensure responses meet the required safety threshold.

Each layer incorporates multiple mechanisms to ensure safe and appropriate interactions, which will be detailed in the next section.

4 Methodology

Our evaluation consists of four main components:

Safety Violation Detection

The primary objective here is to assess the system's ability to prevent potential safety violations. This will involve creating a challenging test set of user inputs specifically designed to test the limits of the system's safety constraints. A team of healthcare professionals and AI ethics experts will then manually review the system's outputs. The

evaluation will focus on the rate of potential safety violations, classify these violations by type and assess how effective different guardrail layers are in catching these violations.

Information Accuracy

The goal is to evaluate the accuracy of the medical information provided by the system. A random sampling of the system's responses will be fact-checked against current medical literature and guidelines by a team of medical professionals from various specialties. The evaluation metrics will include the accuracy rate of the provided medical information, the types and severity of inaccuracies, and the effectiveness of the knowledge integration layer in ensuring the system provides up-to-date information.

Conversation Naturalness and Empathy

We assess the quality of the system's conversations in terms of naturalness and empathy. A blind comparison study will be conducted involving healthcare professionals who will evaluate the system's conversations against those of other commercial health chatbots and transcripts of human healthcare providers. The study will use standardized scenarios to ensure consistency across evaluations, and the conversations will be rated on a 5-point Likert scale based on attributes like naturalness, empathy, clarity, and appropriateness.

User Experience Study

The focus here is to gather feedback from actual users on the system's perceived safety, helpfulness, and ease of use. This will involve a pilot study with patients who have various chronic conditions, where they will interact with the system. Feedback will be collected through surveys and semi-structured interviews, with evaluation metrics such as user satisfaction ratings, perceived helpfulness in managing chronic conditions, comfort level in discussing health concerns with the AI system, and qualitative feedback on the system's strengths and areas for improvement.

4.1 Ethical Considerations

Our experimental design prioritizes user safety and privacy. We ensure that all participants are fully informed about the nature of the study and the AI system they are interacting with. They are clearly instructed on the limitations of the AI system, and the importance of consulting healthcare professionals. Strict protocols have been put in place to protect user data and ensure anonymity. We also endeavor to have a diverse representation in our user studies to assess the system's performance across different demographics.

4.2 Limitations

We acknowledge several limitations in our experimental design. The user experience study is limited to a four-week period, which may not capture long-term effects or rare edge cases. Despite efforts to ensure diversity, our user group may not be fully representative of all potential users. Lastly, user engagement and satisfaction may be influenced by the novelty of interacting with an AI health assistant.

5 Conclusion

The multi-layered guardrail system presented in this paper represents a novel approach to addressing the challenges of deploying LLMs in healthcare contexts. As AI continues to advance, frameworks like ours will be crucial in ensuring that these powerful technologies are deployed responsibly in sensitive domains like healthcare.

The journey towards safe and effective AI-assisted healthcare support is ongoing, requiring continued collaboration between AI researchers, healthcare professionals, ethicists, and patients. By pursuing this research agenda, we can work towards a future where AI serves as a valuable tool in healthcare, augmenting and supporting human care to ultimately contribute to improved patient outcomes and experiences.

Disclosure of Interests. Authors are employees of AmalgamRx.

References

- Davenport, T., Kalakota, R.: The potential for artificial intelligence in healthcare. Future Healthc. J. 6(2), 94–98 (2019)
- 2. Brown, T.B., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems 33, pp. 1877–1901. Curran Associates, Inc. (2020)
- Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1), 51–89 (2003)
- 4. Weizenbaum, J.: ELIZA a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)
- 5. Vinyals, O., Le, Q.: A Neural Conversational Model (2015). arXiv:1506.05869
- 6. Xu, L., et al.: Towards a medical chatbot for mental health support: evaluation and ethical considerations. J. Med. Internet Res. **23**(5), e27850 (2021)
- 7. Inkster, B., Sarda, S., Subramanian, V.: An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIR Mhealth Uhealth 6(11), e12106 (2018)
- Morley, J., et al.: The ethics of AI in health care: a mapping review. Soc. Sci. Med. 260, 113172 (2020)
- 9. Wallace, R.S.: The anatomy of A.L.I.C.E. In: Epstein, R., Roberts, G., Beber, G. (eds.) Parsing the Turing Test, pp. 181–210. Springer, Dordrecht (2009)
- 10. Ferrucci, D., et al.: Building Watson: an overview of the DeepQA project. AI Mag. **31**(3), 59–79 (2010)
- 11. Serban, I.V., et al.: A survey of available corpora for building data-driven dialogue systems: the journal version. Dialogue Discourse **9**(1), 1–49 (2018)
- 12. Wei, J., et al.: Emergent Abilities of Large Language Models (2022). arXiv:2206.07682
- 13. Liu, B., Sundar, S.S.: Should machines express sympathy and empathy? Experiments with a health advice Chatbot. Cyberpsychol. Behav. Soc. Netw. **21**(10), 625–636 (2018)
- Bickmore, T.W., et al.: Patient and consumer safety risks when using conversational assistants for medical information: an observational study of Siri, Alexa, and Google Assistant. J. Med. Internet Res. 20(9), e11510 (2018)
- 15. Fitzpatrick, K.K., Darcy, A., Vierhile, M.: Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment. Health **4**(2), e19 (2017)

- 16. Patel, B.N., et al.: Human—machine partnership with artificial intelligence for chest radiograph diagnosis. npj Digit. Med. **2**, 111 (2019)
- Char, D.S., Shah, N.H., Magnus, D.: Implementing machine learning in health care addressing ethical challenges. N. Engl. J. Med. 378(11), 981–983 (2018)
- 18. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. **21**(140), 1–67 (2020)
- 19. Liu, P., et al.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. **55**(9), 1–35 (2023)
- Dinan, E., et al.: Safety for Conversational AI: Challenges, Opportunities, and Recommendations (2021). arXiv:2106.06635
- Ouyang, L., et al.: Training language models to follow instructions with human feedback.
 In: Advances in Neural Information Processing Systems 35, pp. 27730–27744. Curran Associates, Inc. (2022)